Mathematical Reasoning
Logic, Proof, and Set Theory

Table of contents

Introduction 4
1 Logic and Propositions 4
1.1 Historical Background L L 4
1.2 Understanding Propositions oo 5)
1.3 Formal Definitions 5
1.3.1 Logical Connectives e 5)

1.3.2 Related Statements 6

1.3.3 Necessary and Sufficient Conditions 7

1.4 Key Properties 7
1.5 Quantifiers e 8
1.5.1 Negating Quantifiers 8

1.5.2 Order Matters e 8

1.5.3 Edge Cases e 9

1.6 Examples L 9
1.6.1 Example 1: Simple Truth Table 9

1.6.2 Example 2: Quantifier Order, 9
1.6.3 Example 3: Vacuous Truth 10
1.6.4 Example 4: Non-Example o 10

1.7 Frequent Mistakes 10
1.8 Prerequisites and Connections 11
2 Proof Techniques 11
2.1 Historical Background L oo 11
2.2 What Isa Proof? e 11
2.3 Direct Proof 11
2.3.1 Example 1: Simple Direct Proof 0. 12

2.4 Proof by Contrapositive 12
2.4.1 Example 2: Contrapositive Proof oo 12

2.5 Proof by Contradiction 13
2.5.1 Example 3: Classic Contradiction 13

2.6 Proof by Cases e 14
2.6.1 Example 4: Case Analysis e 14

2.7 Choosing a Technique 15

2.8 Verifying Proofs 15

2.9 What to Watch For. 15
2.10 Prerequisites and Connections e 15
Sets and Operations 16
3.1 Historical Background 16
3.2 Understanding Sets 16
3.3 Formal Definitions Lo 16
3.3.1 Specifying Sets 16
3.3.2 Special Sets 17
3.4 Subsets 18
3.5 Set Operations L L 18
3.5.1 Union: AUB e e e e 18
3.5.2 Imtersection: ANB 18
3.5.3 Difference: AN\ B 18
3.5.4 Complement: A% e 19
3.5.5 Symmetric Difference: AAB 19
3.6 Properties of Set Operations. 19
3.7 Cartesian Productso 20
3.8 Power Sets 20
3.8.1 Example 1: A={1,2} 20
3.8.2 Example 2: A={a,b,c} 21
3.83 Example3: A=0 21
3.9 Examples e 21
3.9.1 Example 1: Element vs. Subset, 21
3.9.2 Example 2: Set Operations oo 21
3.9.3 Example 3: Proving Set Equality 22
3.9.4 Example 4: Non-Example 22
3.10 Typical Errors L 23
3.11 Building Blockso 23
Relations and Functions 23
4.1 Relations e e e 23
4.1.1 Properties of Binary Relations 24
4.1.2 Equivalence Relations L o 24
4.2 Functions L 24
4.2.1 Typesof Functions 25
4.3 Examples e e e 25
4.3.1 Example 1: Injective Function 25
4.3.2 Example 2: Not Injective oo o 25
4.3.3 Example 3: Surjective Function o oo oL 26
4.3.4 Example 4: Not Surjective.o 26
4.3.5 Example 5: Bijective Function 0 oo 26
4.3.6 Example 6: Surjectivity Depends on Codomain 26
4.4 Function Composition L 27
4.5 Common Errors. 27

5 Cardinality 27

5.1 Understanding Infinity L o 27
5.2 Comparing Set Sizes 28
5.3 Countably Infinite Sets 28
5.3.1 Example 1: Even Natural Numbers. 28
5.3.2 Example 2: Integerso 29
5.3.3 Example 3: Rational Numbers 29

5.4 Uncountably Infinite Sets L o 29
5.4.1 Cantor’s Diagonal Argument L . 30

5.5 Hierarchy of Infinities 30
5.5.1 Summary Table. 31

5.6 Examples 31
5.6.1 Example 1: Interval [0,1] 31
5.6.2 Example 2: Power Set of Naturals 31
5.6.3 Example 3: Non-Example oo, 31

5.7 What to Watch For. 32
5.8 Prerequisites and Connections Lo Lo 32
6 Mathematical Induction 32
6.1 Historical Background L oo 32
6.2 Understanding Mathematical Induction 33
6.3 Formal Definition 33
6.4 Why This Definition 34
6.5 Key Properties L 34
6.5.1 Property 1: Well-Ordering Principle (Equivalent) 34
6.5.2 Property 2: Strong Induction 35
6.5.3 Property 3: Structural Induction L. 35

6.6 Main Theorems e 35
6.7 Computational Methods 36
6.7.1 Algorithm: Writing an Induction Proof 36
6.7.2 Example: Sum Formula o 36

6.8 Examples and Worked Problems o oo 37
6.8.1 Worked Example 1: Proving a Summation Formula. 37
6.8.2 Worked Example 2: Divisibilityo 38
6.8.3 Guided Problem 3: Inequality 39
6.8.4 Practice Problem 4: Geometric Sum 40
6.8.5 Challenge Problem 5: Fibonacci Inequality 40

6.9 Frequent Mistakes and Debugging 40
6.9.1 Error Pattern 1: Not Stating the Inductive Hypothesis 40
6.9.2 Error Pattern 2: Proving the Base Case for n = 0 When Statement isn 1 . 41
6.9.3 Error Pattern 3: Circular Reasoning (Using P(k+1) to Prove P(k+1)) 41
6.9.4 Error Pattern 4: Incomplete Base Case (Multiple Base Cases Needed) 42
6.9.5 Error Pattern 5: Algebra Errors in Inductive Step 42
6.9.6 Debugging Checklist for Induction Proofs 42

6.10 Mathematical Connections L o 43
6.10.1 Prerequisites 43
6.10.2 What This Enables 43
6.10.3 Related Concepts e 44

6.10.4 Synthesis: The Bigger Mathematical Picture 44

6.11 Exploring Further L 45

6.11.1 Generate Your Own Examples 45

6.11.2 Create Your Own Problems 45

6.11.3 Extend the Concept 46

6.11.4 Prove Related Results 46

6.11.5 Hints and Ideas for Exploration 47

7 Applications to Machine Learning a7

7.1 Training and Test Sets 47

7.2 Hypothesis Classes e 48

7.3 Feature Spaces e 48

7.4 PAC Learning and Quantifiers L Lo oo 49

7.5 Function Spaces. o i i e e e e 49

8 Practice Problems 49

8.1 Problem Set 1: Logic 49

8.2 Problem Set 2: Proofs 49

8.3 Problem Set 3: Sets 50

8.4 Problem Set 4: Functions 50

8.5 Problem Set 5: Cardinality 50

8.6 Problem Set 6: Mathematical Induction 50

8.6.1 Solution to Guided Problem 3. 50

8.6.2 Solution to Practice Problem 4 51

8.6.3 Solution to Challenge Problem 5 52
Introduction

This document builds foundations in logic, proof techniques, and set theory. These topics form the
language and reasoning tools for all advanced mathematics.

We start with propositional logic and quantifiers, move through various proof techniques, then
develop set theory from basic operations through cardinality and infinite sets. Each concept
progresses from intuition through formal definitions to computational methods and examples.

1 Logic and Propositions

1.1 Historical Background

In the late 19th century, mathematicians discovered contradictions in seemingly sound reasoning.
Russell’s paradox (1901) showed that intuitive set theory led to logical impossibilities. This crisis
demanded a formal foundation for mathematical logic.

George Boole (1847) first treated logic as algebra. Gottlob Frege (1879) developed predicate logic
with quantifiers. By the early 20th century, logic became a rigorous mathematical discipline,
establishing clear rules for what constitutes valid reasoning.

1.2 Understanding Propositions
A proposition is a statement that’s either true or false—mnever both, never neither. Think of it as a
light switch: on (TRUE) or off (FALSE).

Propositions: - “2 + 2 = 4” (TRUE) - “The Earth is flat” (FALSE)
- “P = NP” (unknown, but still a proposition)

Not propositions: - “Close the door” (command) - “Is it raining?” (question) - “x > 0” (depends
on z—this is a predicate)

Natural language is often ambiguous: “I saw the man with the telescope” could mean two different
things. Mathematical language must be precise.

1.3 Formal Definitions

1 Definition: Proposition

A proposition is a declarative statement with exactly one truth value: TRUE (T) or FALSE

(F).

1.3.1 Logical Connectives

Negation (—P):

e
=

Conjunction (P A Q):

PAQ

CRCEERENIOY
R TR
e eS|

True only when both are true.

Disjunction (P V Q):

PVQ

SECEERENEY
THaEA[O
CESRERS

True when at least one is true (inclusive or).

Implication (P — Q):

P Q@ P—Q
T T T
T F F
F T T
F F T

The only false case: P true but) false.

When P is false, the implication is vacuously true regardless of). Think of it like a promise: “If
you score 100% on the exam, you'll get an A. If you score 85%, was the promise broken? No—the

condition wasn’t met.

Warning

A common error: from P —) and observing () is true, concluding P must be true. This is

affirming the consequent and is invalid.
Example: “If it rains, the ground is wet.” Seeing wet ground doesn’t prove it rained—could be

sprinklers.

Biconditional (P < Q):

S N REN Y
CRERCREN
R

True when P and @ have the same truth value. Equivalent to (P — Q) A (Q — P).

1.3.2 Related Statements

Given P — Q:

Statement Form Relationship to Original

Original P—Q —
Contrapositive —Q — —P Logically equivalent
Converse Q—P NOT equivalent
Inverse -P — =@ NOT equivalent

The contrapositive is equivalent to the original—sometimes proving —() — —P is easier than proving
P — (@ directly.

1.3.3 Necessary and Sufficient Conditions

When P — @ is true: - Pis sufficient for) (having P guarantees Q) -) is necessary for P (can’t
have P without Q)

For a matrix to be invertible, det(A) # 0 is both necessary and sufficient. Being square is necessary
but not sufficient.

1.4 Key Properties

De Morgan’s Laws:

~(PAQ)=(=P)V(=Q)

~(PVQ)=(—P) A (=Q)
Implication equivalences:
P — Q=-Q — —P (contrapositive)
P—-Q=-PVvVQ
Negating implication:

~(P=Q)=PA-Q

1.5 Quantifiers

Mathematical statements often involve variables. Quantifiers specify how variables range.

Universal quantifier (V): “for all”

Vo e S, P(x)

means P(z) is true for every element z in set S.
Examples: - Vn € Z,(n+0=mn) — TRUE - Vn € Z,(n? > 0) — FALSE (fails at n = 0)

Existential quantifier (3): “there exists”

dr e S, P(x)

means P(z) is true for at least one element z in S.

Examples: - In € Z,(n? =4) — TRUE (n =2 or n = —2) - 3z € R, (22 = —1) — FALSE (no real
solution)

1.5.1 Negating Quantifiers
—(Vz, P(x)) = Jz,~P(x)

“Not all satisfy P’ means “some doesn’t satisfy P’

—(3z, P(x)) = Va,~P(x)

“There doesn’t exist” means “all don’t satisfy P’

1.5.2 Order Matters

| Important

When quantifiers have different types (V vs 3), order is crucial.

Statement A: Vx Iy (z < y)

“For every z, there exists y bigger than z”
TRUE — given any x, choose y = x + 1
Statement B: JyVr (z < y)

“There exists y bigger than all x”

FALSE — no maximum real number exists

The difference: In A, y depends on z (different y for each z). In B, one fixed y must work for all
simultaneously.

The e-d definition of continuity uses this pattern:

Ve > 0,30 > 0,Vx,(Jx —a| <d = |f(z) — fla)] <e)

Someone gives you any € > 0, then you find § > 0 (depending on that €), such that the condition
holds for all x.

1.5.3 Edge Cases
When working with statements about real numbers or integers, always check: - 2 = 0 (additive

identity, no multiplicative inverse) - z = 1 (multiplicative identity) - x = —1 (sign changer) - Positive
and negative cases separately - For squares: negative inputs fail since 2 > 0 in R

1.6 Examples
1.6.1 Example 1: Simple Truth Table

Verify P — Q =-PV Q:

P Q -P P>Q -PVQ
T T F T T
T F F F F
F T T T T
FF T T T

Last two columns match—the statements are equivalent.

1.6.2 Example 2: Quantifier Order

Statement: Vz € R, 3y € R, (x +y =0)
“Every number has an additive inverse”
TRUE — given any x, choose y = —x
Compare: Jy € R,Vz € R, (z +y =0)
“There exists a universal additive inverse”

FALSE — no single y makes x +y = 0 for all x

1.6.3 Example 3: Vacuous Truth

Statement: Vz € 0, (xz > 100)
TRUE (vacuously)

The hypothesis “z € ()7 is always false (empty set has no elements). By definition of implication,
FALSE — Q is TRUE for any Q.

Like saying “all unicorns in this room are purple”—vacuously true.

1.6.4 Example 4: Non-Example

“z > 0” is not a proposition because truth value depends on z.

To make it a proposition: - Add quantifier: Vo € R*, (z > 0) — TRUE - Specify value: “5 > 0”7 —
TRUE (now it’s a proposition)

1.7 Frequent Mistakes

Confusing “or” with “exclusive or”:

Mathematical OR is inclusive—P V @ is true when both are true. Natural language often implies
“one or the other, not both.”

Affirming the consequent:
From P — @Q and @, you cannot conclude P. Ground being wet doesn’t prove it rained.
Mishandling vacuous truth:

“If 0 = 1, then I am Napoleon” is TRUE (vacuously). The hypothesis is false, so the implication
holds.

Quantifier scope errors:

“Every student has a favorite professor” is ambiguous. Does each student have their own favorite
(Vs3p), or is there one professor everyone favors (Ip Vs)?

Ignoring edge cases:

Always test £ = 0, z = 1, x = —1, and boundary conditions when verifying statements about
numbers.

10

1.8 Prerequisites and Connections

Requires: Basic understanding of true/false, elementary arithmetic
Enables: All of mathematics—proofs, set theory, analysis, probability

Related: Boolean algebra (algebraic structure of logic), circuit design (logic gates), programming
(conditionals), database queries (logical operators)

2 Proof Techniques

2.1 Historical Background

Before the 19th century, mathematical proofs relied heavily on geometric intuition. But intuition
sometimes fails—Zeno’s paradoxes seemed to show motion was impossible, and non-Euclidean
geometry proved the parallel postulate could be consistently negated.

The solution was rigorous proof from axioms, with no hand-waving. A proof became a finite
sequence of statements, each either an axiom, a previously proven theorem, or following from
previous statements by logical rules.

2.2 What Is a Proof?

Think of a proof as navigating a maze: you start with hypotheses (what you know) and need to
reach the conclusion (what you want to show). The path is a sequence of logical steps.

Different proof techniques are different navigation strategies: - Direct proof: Walk straight from
start to finish - Contrapositive: Walk backwards from NOT-finish to NOT-start - Contradiction:
Assume you're already at finish, derive impossibility - Cases: Split maze into sections, solve each
separately

2.3 Direct Proof

1 Definition: Direct Proof
To prove P — @Q:

1. Assume P (hypothesis)
2. Through logical steps, derive @ (conclusion)
3. Each step must be justified

Structure:

11

Proof:

Assume P.

[Statement 1] by [justification]
[Statement 2] follows from statement 1

Therefore Q.

2.3.1 Example 1: Simple Direct Proof

Claim: If n is even, then n? is even.

Proof:

Assume n is even.

By definition of even, n = 2k for some integer k.

Therefore:

n? = (2k)? = 4k? = 2(2k?)

Since 2k? is an integer, n? has the form 2m where m = 2k?.

2

By definition, n* is even.

2.4 Proof by Contrapositive

1 Definition: Proof by Contrapositive

To prove P — (), instead prove the equivalent statement —() — —P.

Use this when negations are easier to work with than the originals.

2.4.1 Example 2: Contrapositive Proof

Claim: If n? is even, then n is even.

Direct proof from “n? even” isn’t obvious. But the contrapositive is straightforward.
Proof:

We prove the contrapositive: If n is odd, then n? is odd.

Assume n is odd.

By definition, n = 2k + 1 for some integer k.

Therefore:

n? = (2k +1)% = 4k? + 4k + 1 = 2(2k> + 2k) + 1

12

Since 2k? + 2k is an integer, n? = 2m + 1 where m = 2k? + 2k.
By definition, n? is odd.

2.5 Proof by Contradiction

1 Definition: Proof by Contradiction

To prove statement S:

1. Assume —S (opposite of what you want)
2. Derive a logical contradiction (R A —R)
3. Conclude S must be true

Use this for proving negatives, irrationality, infinitude, or non-existence.

2.5.1 Example 3: Classic Contradiction

Claim: /2 is irrational.

Proof:

Assume, for contradiction, that v/2 is rational.

Then v2 = ¢ where a,b € Z, b # 0, and ged(a,b) = 1 (lowest terms).
Squaring both sides:

Multiply by b%:

202 = a?

2

Therefore a~ is even.

By our earlier result, if a? is even then a is even.
So a = 2k for some integer k.

Substituting:

20% = (2k)? = 4k?

Divide by 2:

b2 = 2k

13

Therefore b? is even, which means b is even.
But now both a and b are even, contradicting ged(a,b) = 1.
This contradiction shows our assumption was false.

Therefore /2 is irrational.

2.6 Proof by Cases

1 Definition: Proof by Cases

To prove statement S:

1. Partition all possibilities into exhaustive cases
2. Prove S holds in each case separately
3. Conclude S holds universally

Use when a natural partition exists (even/odd, positive/negative/zero).

2.6.1 Example 4: Case Analysis

Claim: For all integers n, n(n + 1) is even.

Proof:

Let n € Z. Either n is even or n is odd.

Case 1: n is even.

Then n = 2k for some integer k.
Son(n+1)=2k(n+1)=2[k(n+1)].

Since k(n + 1) is an integer, n(n + 1) is even.

Case 2: n is odd.

Then n = 2k + 1 for some integer k.
Son+1=2k+2=2k+1).

Thus n(n+1) = (2k+1)-2(k+1) =2[(2k+ 1)(k+ 1)].
Since (2k + 1)(k + 1) is an integer, n(n + 1) is even.

In both cases, n(n + 1) is even.

14

2.7 Choosing a Technique

Try this order:

1. Direct proof — Can you see a clear path from hypothesis to conclusion?
2. Contrapositive — Are the negations simpler to work with?

3. Contradiction — Is the statement about non-existence or irrationality?
4. Cases — Does the problem naturally split into scenarios?

For proving P — Q:
Contrapositive: Prove =) — —P (still an implication)

Contradiction: Assume P A =@, derive impossibility (different structure)

2.8 Verifying Proofs

A good proof: - States the claim clearly - Defines all variables - Uses precise language - Justifies
each step - Handles all cases - Reaches the stated conclusion - Ends with or QED

2.9 What to Watch For

Circular reasoning:

Using the conclusion in the assumption. “Assume /2 is irrational. Then it’s irrational. ” This
proves nothing.

Proof by example:

“All primes are odd. Proof: 3, 5, 7 are prime and odd. ” Examples don’t prove universal statements.
(Also, 2 is prime and even.)

Assuming what you want to prove:

When proving A = B, don’t start by assuming A = B. Start from definitions or axioms.
Incomplete case analysis:

Proving for positive and negative integers but forgetting zero.

Unjustified steps:

“x2 45246 = 0, therefore z = —2 or x = —3.” Missing steps: factor, apply zero product property.

2.10 Prerequisites and Connections

Requires: Logic (implications, quantifiers), basic algebra
Enables: All of mathematics—every mathematical result needs proof

Related: Axiom systems, formal verification, program correctness

15

3 Sets and Operations

3.1 Historical Background

Georg Cantor developed set theory in the 1870s-1890s to understand infinity. His work showed that
some infinities are “larger” than others—there are more real numbers than natural numbers.

In 1901, Bertrand Russell discovered a paradox: consider “the set of all sets that don’t contain
themselves.” Does this set contain itself? Either answer leads to contradiction. This crisis led to
axiomatic set theory (Zermelo-Fraenkel with Choice).

3.2 Understanding Sets

A set is a collection of objects. Think of it as a container or bag. The objects inside are called
elements or members.

Key properties: - Unordered: {1,2,3} = {3,1,2} - Distinct: {1,1,2} = {1,2} (duplicates
ignored) - Well-defined: For any object, we can determine if it’s in the set

Visual: A set is like a basket. An element is like an apple in the basket. The set {3} is a basket
containing one apple (the number 3). The number 3 itself is just an apple, not a basket.

3.3 Formal Definitions

1 Definition: Set

A set is an unordered collection of distinct objects called elements or members.

Notation: - z € S means “z is an element of S” - z ¢ S means “z is not an element of S”

Warning
Critical distinction: 3 is a number (element). {3} is a set containing that number.

e 3€{1,2,3} (3is listed)
o {3} €{1,2,3} ({3} is not listed, only 3 is)
o {3} C{1,2,3} (subset relationship)

3.3.1 Specifying Sets

Roster notation (list elements):

A={1,2,3,4,5}

Set-builder notation:

16

A={zecZ|1<2<5}

Read as: “x in integers such that 1 <z < 5”

General form: {expression | condition}

3.3.2 Special Sets

Empty set: () or {}

I Important

.« [0l=0
o () C S for any set S (vacuously true)
e () € S only if explicitly listed as an element

. 04 {0}

Empty box versus box containing an empty box.

Standard number sets:

N=1{0,1,2,3,..}
Z=1{.,-2,-1,012.}
Q:{%\mbGZb#O}

R (real numbers)

C={a+bi|abeR}

Hierarchy:

NcZcQcRcC

17

3.4 Subsets

1 Definition: Subset

A C B means every element of A is also in B.
Formally: AC B< (Vx € A,z € B)

Proper subset: A C Bmeans A C Band A+# B

Properties: - Reflexive: A C A - Transitive: If A C B and B C C, then A C C - Antisym-
metric: If AC Band BC A, then A=1B

The last property gives us the standard way to prove set equality:

@ Tip

To prove A = B: 1. Show A C B 2. Show BC A

3.5 Set Operations
3.5.1 Union: AUB
AUB={x|zx € Aorz e B}
All elements in A or B (or both).
Example: {1,2,3} U{3,4,5} ={1,2,3,4,5}
3.5.2 Intersection: AN B
ANB={z|z € Aand x € B}
Elements in both A and B.
Example: {1,2,3} N{2,3,4} = {2,3}
Disjoint sets: ANB =1
3.5.3 Difference: A\ B
A\B={zx|x€ Aand x ¢ B}

Elements in A but not in B.
Example: {1,2,3,4}\ {3,4,5} = {1,2}
Note: A\ B # B\ A in general (not commutative).

18

3.5.4 Complement: A€
A=UNA={zecU|x ¢ A}

All elements in the universal set U that are not in A. Requires specifying U.

3.5.5 Symmetric Difference: AAB
AAB = (A\B)U(B\ A)

Elements in A or B but not both (exclusive or).

Example: {1,2,3}A{2,3,4} = {1,4}

3.6 Properties of Set Operations

De Morgan’s Laws:

(AUB)® = A°N B°

(AN B)® = A°U B

Commutative:
AUB=BUA
ANB=BNA
Associative:
AU(BUC)=(AuB)UC
AN(BNC)=(AnB)NnC
Distributive:

AU(BNC)=(AUB)N(AUC)

AN(BUC)=(ANB)U(ANC)

19

3.7 Cartesian Products

1 Definition: Cartesian Product

Ax B={(a,b)|a€ Aand b€ B}

The set of all ordered pairs with first element from A, second from B.

Important: (a,b) # (b,a) unless a = b (order matters)
Cardinality: |A x B| = |A| - |B|

Example:

{1,2} x {a,b} = {(1,), (1,0),(2,0),(2,0)}

Higher dimensions:

R*=RxR={(z,y) | z,y € R}

The plane. Similarly R? is 3D space, R" is n-dimensional space.

3.8 Power Sets

1 Definition: Power Set

P(A) = {S| S C A}
The set of all subsets of A.

Elements of P(A) are sets themselves.

| Important

If |A| = n, then |P(A)| = 27

Why 27?7 For each element: include it in the subset or don’t (2 choices). With n elements:
2% 2 X -+ x 2=2" total subsets.

3.8.1 Example 1: A ={1,2}

‘7)({13 2}) = {@, {1}7 {2}7 {17 2}}

4 subsets total (22 = 4).

20

3.8.2 Example 2: A = {a,b,c}

P(a,b,c}) ={0,{a},{b},{c},{a,b},{a,c} {b,c},{a, b, c}}
8 subsets total (23 = 8).
3.8.3 Example 3: A=10

P(0) = {0}
Not empty! Contains one element (the empty set itself). |P(0)] = 2° = 1.

Power set growth:

Al [P(A)]
0 1
1 2
2 4
38
10 1,024

20 1,048,576
Exponential explosion makes searching all subsets intractable for large sets.

3.9 Examples
3.9.1 Example 1: Element vs. Subset

Given S = {1,2,{3},0} (4 elements: numbers 1, 2, the set {3}, and empty set):

e 1€S8

e {1} €S (only 1 is listed, not {1})
e {1} C S (element 1 isin S)

e 3¢S (3isnot listed, only {3} is)
o {3} €S (explicitly listed)

e DS (explicitly listed as element)
e 0 C S (vacuously true for any set)

3.9.2 Example 2: Set Operations

Let A={1,2,3,4}, B={3,4,5,6}

« AUB=1{1,2,3,4,56}
« ANB=1{3,4}

« AN\B=1{1,2}

« B\ A={56}

« AAB={1,2,5,6}

21

3.9.3 Example 3: Proving Set Equality

Claim: AN(BUC)=(ANB)U(ANC)

Proof:

(C)Let x e AN(BUC).

Then x € Aand x € (BUC).

Sox € Aand (x € Bor x € O).

Case l: x € B. Thenoz € Aandz € B,sox € ANB, thusz € (ANB)U(ANC).
Case 2: x € C. Thenx € Aandz € C,sox € ANC, thusz € (ANB)U(ANC)
Therefore AN(BUC) C (ANB)U(ANC).

(D) Let x e (ANB)U(ANC).

Then z € ANBorx e ANC.

Case I: t€ ANB. Thenz € Aandx € B,sox € BUC, thusz € AN(BUC).

Case 2: 1 € ANC. Thenz e Aandz € C,sox € BUC, thusz € AN(BUCQC).

Therefore (ANB)U(ANC)CAN(BUC).

Since both inclusions hold, AN (BUC) = (ANB)U(ANC).

3.9.4 Example 4: Non-Example

“The set of all sets” is not a valid set in standard set theory. It leads to Russell’s paradox.
Let R={S|S ¢ S} (set of all sets not containing themselves).
Is R € R?

o If R € R, then by definition R ¢ R (contradiction)
o If R ¢ R, then by definition R € R (contradiction)

Resolution: can’t form “set of all sets” (requires proper classes).

22

3.10 Typical Errors

Confusing element and set:

Wrong: 3 C {1,2,3}

3 is a number, not a set. Can’t use C with elements.
Right: 3 € {1,2,3} or {3} C {1,2,3}

Empty set confusion:

0 # {0}

e |0] =0 (no elements)
o |{0}| =1 (one element: the empty set)

Set operation results:

Wrong: {1,2} N{2,3} =2

Results of set operations are always sets.
Right: {1,2} Nn{2,3} = {2}

Forgetting empty set in power set:

P({a,b}) includes both () and {a,b} itself.

3.11 Building Blocks

Requires: Logic (quantifiers for defining operations), basic notation
Enables: Relations, functions, vector spaces, topology, measure theory, probability

Related: Category theory, type theory, logic

4 Relations and Functions

4.1 Relations

1 Definition: Relation

A relation R from A to B is a subset of A x B.

RCAxB

If (a,b) € R, we write a Rb. Meaning that the element a is related to the element b by the relation
R.

23

Example: Less-than on integers

A=B={1,234}

R={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}

This represents: 1 <2, 1<3,1<4,2<3,2<4,3<4

4.1.1 Properties of Binary Relations

For a relation R C A x A:

Reflexive: Va € A, (a,a) € R

Every element related to itself.

Symmetric: Va,b € A, if (a,b) € R then (b,a) € R

If a relates to b, then b relates to a. In other words, if a is related to b, then b is related to a.
Bidirectional relationship should exist in a symmetric relation.

Transitive: Va,b,c € A, if (a,b) € R and (b,c) € R, then (a,c) € R
Chaining works.
Antisymmetric: Va,b € A, if (a,b) € R and (b,a) € R, then a = b

In antisymmetrical relation sets, bidirection only exists when the elements are equal. In other words,
if a is related to b, then b is not related to a unless a = b.

4.1.2 Equivalence Relations

1 Definition: Equivalence Relation

A relation is an equivalence relation if it is: 1. Reflexive 2. Symmetric 3. Transitive

Examples: - Equality (=) - Congruence mod n: a = b (mod n) if n divides (a — b) - Similarity of
matrices

4.2 Functions

1 Definition: Function

A function f: A — B assigns to each element of A exactly one element of B.
Components: - Domain: A - Codomain: B - Range: {f(a) |a € A} C B

Each input maps to exactly one output.

24

4.2.1 Types of Functions
Injective (one-to-one):
Different inputs produce different outputs.
Vo, xy € A, if f(z,) = f(xy) then z; = x4

Equivalently (contrapositive): If z; # x,, then f(z,) # f(x,)
Surjective (onto):

Every element of codomain is hit.

Vb € B,3a € A such that f(a) =b

Equivalently: Range = Codomain
Bijective:

Both injective and surjective. Perfect one-to-one pairing.

! Important

Only bijective functions have inverses.

4.3 Examples
4.3.1 Example 1: Injective Function
f*R=R, f(x)=2x+3
Injective? YES
If f(x,) = f(z,), then 2z, + 3 = 2z, + 3, so 2z, = 2x,, thus z; = z,.
4.3.2 Example 2: Not Injective
g:R—=R, gx)==x

Injective? NO
9(2) =4 =g(—2), but 2 £ —2.

25

4.3.3 Example 3: Surjective Function

f:R—=R, f(zx)=2a>
Surjective? YES
For any y € R, choose x = {/y, then f(z) =y.
4.3.4 Example 4: Not Surjective

g:R—=R, gx)==z
Surjective? NO
Range is [0, 00), which doesn’t equal codomain R. For y = —1, no real x satisfies 22 = —1.
4.3.5 Example 5: Bijective Function

h:[0,00) = [0,00), h(x)=2?

Injective? YES (for z,,z, > 0, if 23 = 22 then z; = z,)
Surjective? YES (for any y > 0, choose x = /y)

Therefore bijective. Inverse: h™!(y) = \/y

4.3.6 Example 6: Surjectivity Depends on Codomain
[iR—R, f(z)=a?

NOT surjective (as shown above).

h:R—1[0,00), h(z)=2?

IS surjective (changed codomain to match range).

26

4.4 Function Composition

(g° f)(x) = g(f(z))

Apply f first, then g.

Example:

fla)=z+1, g(z)=2a

(ge f)x) =g(x+1) = (z+1)

(fog)(x) = f(a?) =2 +1

Different functions! Composition is not commutative: go f # f o g in general.

Composition preserves properties: - f,g injective = g o f injective - f, g surjective = go f
surjective - f, g bijective = g o f bijective

4.5 Common Errors

Thinking relation = function:

Relations can have one input mapping to multiple outputs. Functions must have exactly one output
per input.

Claiming function not surjective without specifying codomain:

2 is surjective onto [0, 00) but not onto R.

Always state the codomain explicitly. f(z) ==z
Confusing injective with surjective:
Injective: different inputs — different outputs
Surjective: all outputs are hit

Different concepts!

5 Cardinality

5.1 Understanding Infinity

Before Cantor, infinity was treated as a single concept. Cantor asked: can we compare sizes of
infinite sets? Are there more real numbers than natural numbers?

His shocking answer: yes, some infinities are strictly larger than others.

27

5.2 Comparing Set Sizes

For finite sets, size means counting. For infinite sets, we can’t “count to infinity,” but we can
establish pairings.

1 Definition: Same Cardinality

Sets A and B have the same cardinality (written |A| = |B|) if there exists a bijection
f:A—B.

Think of it as a perfect pairing—each element of A pairs with exactly one element of B, and vice
versa.

5.3 Countably Infinite Sets

1 Definition: Countably Infinite

A set is countably infinite if |A| = |N|.
Equivalently: elements can be listed as ay,a;,aq,as, ...

5.3.1 Example 1: Even Natural Numbers

Claim: [{0,2,4,6,...}| = |N|
Define f : N — {evens} by f(n) = 2n:

f(0)=0 (1)
f1) =2 (2)
f(2) =4 (3)
fB)=6 (4)

Injective: If 2n; = 2n,, then n; = n,
Surjective: For any even 2k, choose n = k, then f(n) = 2k

Therefore bijection exists. Even though evens are a proper subset of naturals, they have the same
cardinality!

28

5.3.2 Example 2: Integers

Claim: |Z| = |N|

List integers by alternating positive and negative:
0,1,-1,2,-2,3,-3,4,—4, ...

Define:

0 n=>0
f(n)=<n/2 n even and n > 0
—(n—1)/2 nodd

Each integer appears exactly once—Dbijection exists.

5.3.3 Example 3: Rational Numbers

Claim: |Q| = |N|

Arrange positive rationals in a grid:

/1 1/2 1/3 1/4 1/5
2/1 2/2 2/3 2/4 2/5
3/1 3/2 3/3 3/4 3/5
4/1 4/2 4/3 4/4 4/5

“Snake” through diagonally, skipping duplicates (like 2/2 = 1/1):

1/1—-1/2—-2/1 —-3/1—2/2(skip) > 1/3 —>1/4—2/3 — ..

This gives a listing of all positive rationals. Include negative rationals and zero (like we did for
integers), get |Q| = |N|.

Rationals are countable despite being “everywhere” (dense in the reals).

5.4 Uncountably Infinite Sets

1 Definition: Uncountable

A set is uncountable if it is infinite but NOT countably infinite.
Cannot be put in bijection with N.

29

5.4.1 Cantor’s Diagonal Argument

Theorem: R is uncountable (|R| > |NJ)
Proof:

Assume R is countable. Then we can list all reals in [0, 1):

T4 — O.d41d42d43d44

Construct new number © = 0.2, 25232, ... where z,, # d,,,, and =, # 0,9.

Example:

ry = 0.5123456 ...
ry = 0.3987654 ...
ry = 0.1415926 ...
r, = 0.2718281 ...

Diagonal: 5,9, 1, 8, ..
Choose: 2 = 0.6129 ... (each digit different from diagonal)

t

~~
=)
~— ~— ~— ~—

o

N

—

_ O
S— N N N

Then: - z # r, (differ in position 1: 6 vs 5) - x # ry (differ in position 2: 1 vs 9) - # ry (differ in

position 3: 2 vs 1) - x # r, (differ in position 4: 9 vs 8)
So x € [0,1) but z is not in our “complete” list! Contradiction.
Therefore R cannot be listed—it’s uncountable.

Why avoid 0 and 9?7 To prevent issues like 0.999 ... = 1.000...

5.5 Hierarchy of Infinities

Cantor’s Theorem: For any set A, |A| < |P(A)]
Power set is always strictly larger.

Consequence:

IN| =Ry < [R] =2% =¢ < |P(R)| = 2° < |P(P(R))| = 2% < -

Infinite hierarchy of infinities—no “largest” infinity.

30

5.5.1 Summary Table

Set Cardinality Type

0 0 Finite

{1,2,3} 3 Finite

N Ry Countably infinite

YA Ry Countably infinite

Q N, Countably infinite

R c=2% Uncountably infinite
[0, 1] c Uncountably infinite
P(N) c Uncountably infinite
P(R) 2¢ Larger infinity

5.6 Examples
5.6.1 Example 1: Interval [0,1]

Claim: |[0, 1]| = |R|
Seems impossible—finite interval same size as entire real line?

Define f: (0,1) — R by:

for-n(s(o-1)

This is a bijection mapping the open interval onto all reals. Similar construction works for [0, 1].

5.6.2 Example 2: Power Set of Naturals

Claim: |?(N)| = |R|

Each subset of N corresponds to an infinite binary sequence. These can be mapped to real numbers
in [0, 1] via binary representation. With care about duplicates, this gives a bijection.

5.6.3 Example 3: Non-Example

Can’t use diagonal argument on integers because integers aren’t in decimal expansion form. The
argument specifically applies to reals.

31

5.7 What to Watch For

Thinking “larger” means what it does for finite sets:

Rationals are denser than integers (between any two rationals, there’s another), yet |Q| = |Z|.
Assuming proper subset must be smaller:

Evens are half the naturals in finite sense, but |{evens}| = |N| (for infinite sets).
Misapplying diagonal argument:

Only works for objects with infinite expansions (like reals in decimal form). Can’t use it on
integers.

Thinking all infinities are equal:

Nl < |R| < [2(R)] < -~

Multiple distinct infinite cardinalities exist.
Confusing countable with finite:

“Countable” means finite OR countably infinite. Both {1,2,3} and N are countable.

5.8 Prerequisites and Connections

Requires: Set theory (bijections), logic (proof by contradiction)
Enables: Measure theory, topology, analysis, learning theory

Related: Cardinal arithmetic, ordinal numbers, continuum hypothesis

6 Mathematical Induction

6.1 Historical Background

The principle of mathematical induction has roots in ancient mathematics, but its modern formaliza-
tion emerged in the 16th-17th centuries. Blaise Pascal (1653) used a form of induction in his work
on binomial coefficients. Francesco Maurolico (1575) proved results about sums using inductive
reasoning.

The term “mathematical induction” was coined by Augustus De Morgan in the 1830s. Giuseppe
Peano (1889) incorporated induction as an axiom in his axiomatization of natural numbers—the
fifth Peano axiom explicitly states the principle of mathematical induction.

Why was formalization necessary? Early mathematicians observed patterns (like 1 +2 4 - +n =
@) and verified them for many cases. But mathematical truth requires proof for ALL cases,
infinitely many of them. Induction provides a rigorous method to prove statements about all natural

numbers without checking each one individually.

32

This wasn’t about applications—it was about establishing a logically sound foundation for reasoning
about infinite sequences of statements.

6.2 Understanding Mathematical Induction

Imagine an infinite line of dominoes. You want to prove they all fall down. How?

Two steps: 1. Knock down the first domino (base case) 2. Ensure each domino knocks
down the next (inductive step)

If both conditions hold, all dominoes must fall.

Mathematical induction works the same way for statements about natural numbers: - Prove the
statement for n = 1 (base case) - Prove: “if true for n = k, then true for n = k 4+ 1”7 (inductive

step)
Together, these guarantee the statement holds for all n > 1.

Physical analogy: Think of climbing an infinite ladder. You can reach any rung if: 1. You
can reach the first rung (base case) 2. From any rung you can reach, you can reach the next one
(inductive step)

Why it works: Suppose the statement fails for some number. Let m be the smallest number
where it fails. But we proved it for n = 1, so m > 1. Since m is smallest, it works for m — 1. But
the inductive step says if it works for m — 1, it works for m. Contradiction! Therefore, no such m
exists.

6.3 Formal Definition

1 Principle of Mathematical Induction
Let P(n) be a statement about natural number n. If:

1. Base case: P(1) is true
2. Inductive step: For all & > 1, if P(k) is true, then P(k + 1) is true

Then P(n) is true for all natural numbers n > 1.

Components unpacked:

o P(n): A predicate (statement depending on n)

« Base case: Verify P(1) directly

o Inductive hypothesis: Assume P(k) is true for arbitrary k
o Inductive step: Using the hypothesis, prove P(k + 1)

o Conclusion: By induction, P(n) holds for all n > 1

Variants: - Can start at any n, (not just 1): prove P(ny) and P(k) = P(k+1) - Strong induction:
Assume P(1), P(2),..., P(k) all true, prove P(k + 1) - Backward induction: Sometimes prove
P(k+ 1) = P(k) with a different base

33

6.4 Why This Definition

Why two separate steps?

The base case alone isn’t enough—verifying P(1), P(2), P(3),... for finitely many values proves
nothing about ALL values.

The inductive step alone isn’t enough either. Consider the statement P(n): “n = n+ 1”. The
inductive step is vacuously true (if k = k + 1, then k + 1 = k + 2), but the statement is false for all
n.

Why assume what we’re trying to prove?

This confuses many students. We're NOT proving P(k)—we’re proving the implication: P(k) =
P(k+1).

Think of it as proving: “IF the statement works for some number, THEN it works for the next
number.” We're allowed to assume the hypothesis of an implication to prove the conclusion.

Why start at 1 (or any specific base)?

Because the chain must start somewhere. The inductive step links & to k+ 1, but without an anchor
(base case), we can’t conclude anything. It’s like having dominoes arranged but never knocking the
first one over.

What makes this different from assuming what we want to prove?

We prove: 1. P(1) (established independently) 2. P(1) = P(2) (from inductive step with k = 1)
3. Therefore P(2) (modus ponens) 4. P(2) = P(3) (from inductive step with k = 2) 5. Therefore
P(3) (modus ponens) 6. ..continues infinitely

Each specific case is proven, though we can’t write them all. The induction principle formalizes this
infinite process.

6.5 Key Properties
6.5.1 Property 1: Well-Ordering Principle (Equivalent)

Mathematical induction is equivalent to the well-ordering principle: every nonempty subset of
natural numbers has a smallest element.

Why equivalent?

Induction = Well-ordering: Suppose S C N is nonempty with no minimum. Let P(n) = “n ¢ S”.
Then P(1) holds (otherwise 1 would be minimum). If P(k) holds, then P(k+1) must hold (otherwise
k 4 1 would be minimum). By induction, P(n) holds for all n, so S is empty. Contradiction.

Well-ordering = Induction: Suppose P(1) and P(k) = P(k+ 1), but P(n) fails for some n. Let S
= {n: P(n) is false}. By well-ordering, S has minimum element m. We know m # 1 (base case).
Som >1and m—1 ¢ S, meaning P(m — 1) is true. By inductive step, P(m) is true, contradicting
meS.

This equivalence means you can use either principle depending on which is more convenient for a
given problem.

34

6.5.2 Property 2: Strong Induction

1 Strong Induction Principle

If: 1. P(1) is true (base case) 2. For all k£ > 1: if P(1),P(2),..., P(k) are all true, then
P(k+1) is true
Then P(n) is true for all n > 1.

Why is this equivalent to regular induction?
Strong induction appears stronger (assume more), but they’re equivalent in power.

Proof of equivalence: Let Q(n) = “P(1) AP(2)A--AP(n)”. Then strong induction on Pis equivalent
to regular induction on Q.

When to use strong induction:

When proving P(k + 1) requires knowing P holds for multiple previous values, not just P(k).
Example: Fibonacci recurrence, fundamental theorem of arithmetic.

6.5.3 Property 3: Structural Induction

Beyond numbers, induction applies to any well-founded structure: - Trees (induction on tree depth
or node count) - Strings (induction on length) - Formulas (induction on complexity) - Recursively
defined objects

The principle: prove for base structures, then prove the property is preserved under construction
operations.

6.6 Main Theorems

! Theorem: Equivalence of Induction and Well-Ordering

The following are equivalent over the natural numbers: 1. Principle of Mathematical Induction
2. Well-Ordering Principle 3. Strong Induction Principle

Proof sketch: Already shown in Key Properties above. The key insight is that all three capture
the fundamental structure of N as built from 1 by repeatedly adding 1.

! Theorem: Induction as Proof Technique

For any predicate P(n) on natural numbers, if the base case and inductive step are proven,
then Vn > ny, P(n) is established with certainty.

This formalizes that induction is a valid proof method, not just heuristic reasoning.

35

6.7 Computational Methods
6.7.1 Algorithm: Writing an Induction Proof

Template:

Theorem: [State what you're proving: P(n) for alln n]
Proof by induction:
Base case (n = n):
[Verify P(n) directly by computation/argument]
[Show result: "Therefore P(n) holds."]
Inductive step:
Inductive hypothesis: Assume P(k) is true for arbitrary k n.

[State explicitly what P(k) says with k substituted]

Goal: Prove P(k+1)
[State explicitly what P(k+1) says]

[Proof of P(k+1) using P(k)]
[Chain of implications/equalities]
[Point out where you used inductive hypothesis]

Therefore P(k+1) holds.

Conclusion:
By the principle of mathematical induction, P(n) holds for alln n.

6.7.2 Example: Sum Formula

n . n(n+1
Prove: Foralln >1, 3" i= (s)
Proof:

Base case (n =1):

Therefore P(1) holds.
Inductive step:

Inductive hypothesis: Assume for some k > 1:

1= ——"=

k(k+1)
2

k
i=1

36

Goal: Prove:
Proof:

k+1 k
Zi: (E)) + (k+1)

= @ + (k+1) [by inductive hypothesis]

k(E+1) 2(k+1)

2 2
k(e + 1)+ 2(k+ 1)
2
k+1)(k+2)
2

Therefore P(k + 1) holds.

Conclusion: By mathematical induction, the formula holds for all n > 1.

6.8 Examples and Worked Problems
6.8.1 Worked Example 1: Proving a Summation Formula

[Heavily Scaffolded]
Problem: Prove that for all n > 1: 2?11(22’ —1)=n?
Complete Solution:
This is the sum of the first n odd numbers. We’ll prove it equals n?.
Proof by induction:
Base case (n =1):
Left side: 3} (2i—1)=2(1)—1=1
Right side: 12 =1
Since 1 = 1, the base case holds.
Inductive step:
Inductive hypothesis: Assume that for some k£ > 1:
k
(20 —1) = k?
-1

(2

This is our assumption—we’re assuming the formula works for n = k.

37

Goal: We need to prove it works for n = k + 1:

k+1

d @i—1)=(k+1)

i=1

Proof: Starting with the left side of what we want to prove:

k+1
> 2i-1)= [i(% — 1)] +@2(k+1)—1) (18)

i=1 i=1

(19)

We separated out the last term (i = k+1) from the sum. Now we can apply our inductive hypothesis
to the first part:

=k*+ (2k+2—1) [using inductive hypothesis] (20)
=k?+2k+1 (21)
= (k+1)? [factor as perfect square] (22)

This is exactly what we needed to prove! Therefore P(k+ 1) holds.
Conclusion: By the principle of mathematical induction, the formula Z?: [(20—1) = n? holds for
all natural numbers n > 1.

Key insight: The sum of the first n odd numbers is always a perfect square. This is a beautiful
geometric fact—you can visualize this as an n x n square built from L-shaped odd numbers.

6.8.2 Worked Example 2: Divisibility

[Heavily Scaffolded]
Problem: Prove that for all n > 1, 7* — 1 is divisible by 6.
Complete Solution:
Let P(n) be the statement: “7™ — 1 is divisible by 6”7, or equivalently, “6|(7™" —1)".
Base case (n =1):
h—1=7-1=6=6-1
Since 6 divides 6, the base case holds.
Inductive step:
Inductive hypothesis: Assume for some k > 1 that 6|(7F — 1).
This means: 7% — 1 = 6m for some integer m, or equivalently, 7% = 6m + 1.
Goal: Prove 6|(751 —1).
Proof: We need to show 7! — 1 is divisible by 6.

38

Tl 1=7.7F -1 (23)
=T7(6m+1)—1 [substitute from inductive hypothesis] (24)
—42m+7—1 (25)
= 42m +6 (26)
= 6(Tm +1) (27)

Since 7m + 1 is an integer, we've expressed 7¥*1 — 1 as 6 times an integer. Therefore 6|(75*1 —1).
Conclusion: By mathematical induction, 7" — 1 is divisible by 6 for all n > 1.

Why this works: Each power of 7 exceeds the previous by a factor of 7. Since 7 =1 (mod 6), we
have 7" = 1" =1 (mod 6), so 7" —1 =0 (mod 6).

6.8.3 Guided Problem 3: Inequality

[Moderately Scaffolded]
Problem: Prove that for all n > 5, 2" > n?.
Setup Provided:

This is a common inequality. Notice it’s false for n = 1,2,3,4 (check: 2* = 16 % 16), so our base
case must start at n = 5.

Base case (n =5):
25=32 and 52 =25
Since 32 > 25, the base case holds for n = 5.
Your Task:
Complete the inductive step. Assume 2% > k? for some k > 5. Prove 281 > (k + 1)2.

Hint: Start with 2! = 2.2F and use the inductive hypothesis. You’ll need to show that
2k? > (k +1)2 for k > 5.

Guidance for the algebraic step:

Expand (k+1)? = k? +2k+ 1. You want to show 2k? > k? + 2k + 1, which simplifies to £* > 2k +1,
or k? —2k—1>0. For k > 5, verify this is true.

[Try completing this yourself before checking the solution in the Solutions section]

39

6.8.4 Practice Problem 4: Geometric Sum

[Lightly Scaffolded]
Problem: Prove that for all n > 0 and r # 1:

n+1 _
;T 1

" r—1

n
=0

[This is a standard formula you should prove from scratch using induction. Remember to handle
the base case, state your inductive hypothesis clearly, and manipulate the algebra carefully.]

6.8.5 Challenge Problem 5: Fibonacci Inequality

[Independent)]

Problem: Let F, be the n-th Fibonacci number defined by: - F}, =1, F, =1-F, =F,_+F, o
forn >3

Prove that for all n > 1:
F,<2"
Hint: This will require strong induction since the Fibonacci recurrence depends on two previous

terms.

[This is a novel application requiring you to choose the right induction variant and handle the
recursive definition carefully.]

6.9 Frequent Mistakes and Debugging
6.9.1 Error Pattern 1: Not Stating the Inductive Hypothesis
What goes wrong: Students jump into the inductive step without explicitly writing what they’re

assuming.

Why it happens: Rushing through the proof structure, not understanding that the assumption is
the key tool.

How to catch it: Before proving P(k+ 1), ask yourself: “What exactly am I allowed to assume?”

How to fix it: Always write: “Inductive hypothesis: Assume P(k) is true, i.e., [write out P(k)
with k substituted].”

Example:

Wrong:

Inductive step: We need to prove the formula for n = k+1.
[proceeds to manipulatel

40

Correct:

Inductive step:
Inductive hypothesis: Assume © i = k(k+1)/2

Goal: Prove X 1 i = (k+1) (k+2)/2

6.9.2 Error Pattern 2: Proving the Base Case for n = 0 When Statement isn 1

What goes wrong: Verifying P(0) when the theorem statement says “for all n > 1”.
Why it happens: Confusion about where to start; 0 feels like the “first” natural number.
How to catch it: Read the problem statement carefully. What is the domain of n?

How to fix it: Match your base case to the problem’s starting value. If it says n > 1, verify P(1).
If n > 5, verify P(5).

Example:
Problem: “For all n > 1, prove n! > on—1»
Wrong: Base case n =0: 0! =1 and 27! = 0.5...

Correct: Basecasen=1: 1!=1and 2° =1,s0 1> 1.

6.9.3 Error Pattern 3: Circular Reasoning (Using P(k+1) to Prove P(k+1))

What goes wrong: In the inductive step, accidentally assuming what you’re trying to prove.
Why it happens: Losing track of what’s assumed vs. what’s to be proven.

How to catch it: After completing the proof, check: did I use the statement P(k + 1) anywhere?
If yes, it’s circular.

How to fix it: Clearly separate: - What you HAVE: P(k) (inductive hypothesis) - What you
WANT: P(k+1) (goal)

Only use P(k) in your proof.
Example:

Wrong:

Want to prove: & ' i = (k+1)(k+2)/2

Since this is true [assuming it], we have proven it.
Correct:

T ti=[X 1] + (k+1)

k(k+1)/2 + (k+1) [using P(k)]
(k+1) (k+2)/2

41

6.9.4 Error Pattern 4: Incomplete Base Case (Multiple Base Cases Needed)

What goes wrong: For strong induction or two-term recurrences, verifying only one base case
when two are needed.

Why it happens: Not recognizing that strong induction may require multiple starting values.

How to catch it: If your recurrence is P(k + 1) depends on both P(k) and P(k— 1), you need
base cases for two consecutive values.

How to fix it: Verify all necessary base cases. For Fibonacci-style recurrences, verify n = 1 and
n = 2.

Example (Fibonacci):

Wrong:

Base case (n =1): F =1< 2! =2
Inductive step: Assume F < 2 ...

Correct:

Base case (n 1): F =1< 2t =2
Base case (n =2): F =1< 22 =14
Inductive step: Assume F < 2 ' and F <2 for k 2...

6.9.5 Error Pattern 5: Algebra Errors in Inductive Step

What goes wrong: Correct proof structure but computational mistakes in manipulating expres-
sions.

Why it happens: Working too quickly, not checking intermediate steps.

How to catch it: Verify each algebraic manipulation. Substitute specific values (like k£ = 5) to
check.

How to fix it: - Show all intermediate steps - Factor carefully - Check: does LHS = RHS after
substitution? - For inequalities, preserve inequality direction

6.9.6 Debugging Checklist for Induction Proofs

Before finalizing:

[0 Base case verified for correct starting value (n, from problem statement)

O Inductive hypothesis explicitly stated with k substituted into P(n)

O Goal (P(k+ 1)) clearly stated before proving it

O Inductive hypothesis actually USED in the proof (point out where)

O No circular reasoning (didn’t assume P(k + 1) to prove P(k + 1))

O All algebra steps are correct (verified by checking)

O Conclusion statement: “By mathematical induction, P(n) holds for all n > n,”

42

[0 For strong induction: all necessary base cases verified
O For inequalities: inequality directions preserved throughout

6.10 Mathematical Connections
6.10.1 Prerequisites

To understand mathematical induction, you need:

Essential: - Natural numbers (concept of N = {1,2,3,...}) - Why: Induction works over N -
Specific use: Understanding successor function (n — n + 1)

o Logical implications (P = Q)

— Why: Inductive step is proving an implication
— Specific use: Understanding “if P(k) then P(k+ 1)”

¢ Predicates and quantifiers

— Why: P(n) is a predicate, we prove Vn, P(n)
— Specific use: Substituting values into P

Helpful: - Basic algebra (for manipulating expressions in proofs) - Summation notation (>_) -
Understanding of what constitutes a proof

6.10.2 What This Enables

Mathematical induction unlocks:

Immediate consequences: - Proving formulas for sums: Z?: v (1) - Proving divisibility results
for all n - Proving inequalities for all n (e.g., 2" > n? for n > 5)

Subsequent topics: - Recursive algorithms: Proving correctness (algorithm works for input
size n) - Recurrence relations: Solving and proving solutions (Fibonacci, divide-and-conquer)
- Graph theory: Proving properties about trees (nodes n = edges n — 1) - Combinatorics:
Proving identities (binomial theorem, Pascal’s triangle) - Number theory: Proving divisibility
and congruence results - Analysis: Proving convergence of sequences defined recursively

Mathematical structures enabled: - Well-founded recursion and induction on arbitrary well-
founded sets - Structural induction (trees, formulas, programs) - Transfinite induction (ordinals
beyond N)

43

6.10.3 Related Concepts

Well-Ordering Principle: - Relationship: Equivalent to mathematical induction over N - Differ-
ence: WOP says every nonempty subset has a minimum; induction is proof technique - When to
use which: WOP useful for proof by contradiction; induction for direct proofs

Strong Induction: - Relationship: Equivalent in power to regular induction - Difference: Can
assume P(1),..., P(k) all true instead of just P(k) - When to use: When P(k + 1) depends on
multiple previous cases

Complete Induction: - Another name for strong induction

Structural Induction: - Generalization: Induction on recursively defined structures (not just
numbers) - Examples: Trees, lists, formulas, programs - Same principle: prove base cases, prove
inductive step preserves property

Recursion: - Connection: Induction proves properties of recursive definitions - Recursion defines
objects; induction proves things about them - Example: Fibonacci sequence (recursive def) +
induction (proves properties)

6.10.4 Synthesis: The Bigger Mathematical Picture

Induction’s foundational role:

Mathematical induction is the bridge between finite and infinite. It allows us to make state-
ments about infinitely many objects (all natural numbers) using finite reasoning (base case + one
implication).

Across mathematical domains:

Discrete mathematics: - Proves combinatorial identities - Central to algorithm analysis - Foundation
for discrete structures

Analysis: - Sequence convergence proofs - Series convergence (ratio test involves inductive reasoning)
- Defining real numbers from rationals

Algebra: - Proving properties of algebraic structures - Polynomial division algorithm - Fundamental
theorem of arithmetic (uses strong induction)

Computer Science: - Loop invariants (induction on iteration count) - Proving program correctness -
Complexity analysis (Master theorem, recurrences)

Generalization hierarchy:

1. N: Mathematical induction (finite ordinals)

2. Structural induction: Recursively defined objects

3. Well-founded induction: Any well-founded partial order
4. Transfinite induction: Infinite ordinals w,w + 1, ...

44

Unifying principle:
“Building from base cases through construction rules”

In numbers: Start with 1, build using +1 In logic: Start with axioms, build using inference rules
In sets: Start with (), build using operations In programs: Start with base cases, build using recursive
calls

The pattern repeats throughout mathematics: define a minimal base, define construction operations,
prove properties by induction on the construction.

Why induction is indispensable:

Without induction, we cannot rigorously prove statements about all natural numbers. We’d be
limited to checking finitely many cases, leaving infinitely many unverified. Induction completes the
logical foundation for reasoning about discrete infinite objects.

6.11 Exploring Further
6.11.1 Generate Your Own Examples

1. Create induction proofs for new summation formulas:

n_
i=1 i(i+1) n+1

2
Try proving: - 2?21 i2 = w 3 Z?:l i3 — <n(nz+1)) Sy

Verification: After creating your proof, check that the base case and algebra are correct by
substituting n = 1,2, 3 into both sides.

2. Design divisibility problems:

Create statements like: - For all n > 1, 5" — 1 is divisible by ? (find what works) - For all
n>1, n® —n is divisible by ?

Guidance: Pick a base (like a”) and compute a' —1,a? — 1,a® — 1. Find the GCD—that’s what
divides @™ — 1 for all n.

3. Construct inequality chains:

Create problems like: - Find the smallest n, such that n! > 3" for all n > n, - Prove n? < 2" for
n > 5 (test variations)

6.11.2 Create Your Own Problems

Problem creation framework:

Modify existing: - Original: Prove 3.7 i = n) _ Your variation: Change to Yo (Bi—2) =
@ [verify first!]

Combine concepts: - Induction + modular arithmetic: Prove 7" = 1 (mod 6) for all n > 1 -

: : . 1.3.5. 2n-1 1
Induction + inequalities: Prove < 7

2276 "2n
Reverse engineer: - Pick a formula you know is true (from textbook, etc.) - Write a clean
induction proof - Now modify one part and see what needs to change

45

6.11.3 Extend the Concept

1. Relax to backward induction:

Instead of P(k) = P(k+ 1), what if we prove P(k + 1) = P(k) with a different starting point?

e When does this work?
e What’s a problem suited to backward induction?
o Try: Prove n! > 2™ for n > 4 by showing P(k + 1) = P(k) and verifying a large base case.

2. Generalize to two-dimensional induction:
Prove statements about pairs (m,n) by induction on m + n or by nested induction.
Example: Prove ("") = ("") by induction on m + n.

3. Apply to non-numeric structures:

o Trees: Prove that a binary tree with n nodes has n + 1 null pointers (use structural induction
on tree height)

e Strings: Prove properties about strings of length n

e Graphs: Prove a graph with n vertices and n — 1 edges that is connected must be a tree

4. Strong induction variants:
Define: Complete induction assumes P(1), P(2),..., P(k) (all previous) to prove P(k + 1).
When is this necessary vs. regular induction?

Create problems that require complete induction (like Fundamental Theorem of Arithmetic).

6.11.4 Prove Related Results

1. Prove variations:

We proved: For alln > 1, 33" i= nm;l)

_ n(nt+1)(n+2)

Your challenges: - Prove: 3" (2i—1) = n® [sum of odd numbers| - Prove: 3-" i(i+1) 3

- Generalize: Can you find a pattern for ZZ) ik?
2. Prove consequences:

Using mathematical induction, prove:

e Bernoulli’s Inequality: For x > —1 and n > 1: (1 +x)" > 1+nx
« AM-GM for 2°n terms: “1%" > 2/g ~a,, (use induction on n)
« Binomial Theorem: (z+y)" =" (})a*y" "
3. Prove the equivalences:
Show rigorously: - Induction < Well-Ordering Principle - Regular Induction < Strong Induction

(Detailed proof of both directions)

46

6.11.5 Hints and ldeas for Exploration

For further investigation:
1. Double induction:

Read: How to prove statements about two variables using nested induction

Try: Prove the general binomial theorem: ZZ:O () = 2" using induction on n

Extend: Prove Pascal’s identity (}) = (Zj)+ (n;l) by double induction

2. Combinatorial proofs vs. induction:

Explore: The formula " Jb= n(n;rl) has a beautiful visual proof (arranging dots in triangular

1=
array). Can you find combinatorial proofs for other induction results?
Question: When is induction necessary vs. when can you give a direct combinatorial argument?

3. Limits of induction:

Investigate: Can you prove » ™ i = M? Why not?

Question: What properties of N make induction work that fail for infinite sums?

4. Strengthening the inductive hypothesis:

Sometimes to prove P(n), you must prove a stronger Q(n) by induction because Q(k) = Q(k + 1)
works but P(k) = P(k+ 1) doesn’t.

Example: Try proving F,, < 2" directly vs. proving F,, < 2" ! (the latter works better with strong
induction).

7 Applications to Machine Learning

Now that we have foundations in logic, proof, and set theory, we can see how these concepts underpin
machine learning.

7.1 Training and Test Sets

Data is a set of input-output pairs:

D= {(z;,y;)}jey CX XY

where X is the input space and Y'is the output space.
CXxY
Test set: D, C X XY

Training set: D

train

Requirement: D, ... N D, = 0 (disjoint)

train

47

Without disjoint sets, we’d test on data we trained on—overly optimistic performance estimates.

7.2 Hypothesis Classes

A learning algorithm searches over a hypothesis class:

H ={h: X =Y | h satisfies constraints}

Cardinality affects learnability:
Finite hypothesis class:

H = {hy, hy,....h,}

Can exhaustively search. Always PAC-learnable with enough samples.

Countably infinite:

H = all polynomials with rational coeflicients

|H| = R,. PAC-learnable if VC dimension is finite.

Uncountably infinite:

JH = all continuous functions R¢ — R

|F| = 2¢ (very large). Requires regularization or other constraints for practical learning.

7.3 Feature Spaces

Discrete (finite):

X = {0,1}"

Binary features. |X| = 2™ (exponentially large but finite).

Continuous (uncountable):

X=R"

| X| = ¢ (continuum). Requires measure-theoretic probability—we can’t assign probability to every
individual point.

48

7.4 PAC Learning and Quantifiers

Probably Approximately Correct (PAC) learning definition:

“For all € > 0 and 0 > 0, there exists m such that for all distributions and target functions, with
probability at least 1 — § over samples of size m, the learned hypothesis has error at most &”

Ve, 8 >0,3m, VD, f, P, lerror(h) <e| >1—9§

S|=m

This is a complex nested quantifier statement—understanding quantifier order is essential.

7.5 Function Spaces

Neural networks approximate functions in continuous function spaces:

C([0,1]%) = {continuous functions [0, 1]¢ — R}

This space has cardinality |C([0, 1]¢)| = 2¢ (uncountably infinite).

Universal approximation theorems show neural networks can approximate any function in C/([0, 1]¢)
arbitrarily well (with enough neurons). But we can never achieve actual surjectivity—the set of
representable functions is a dense subset, not the whole space.

8 Practice Problems

8.1 Problem Set 1: Logic

Problem 1: Construct truth table for (P — Q) A (Q — R).
Problem 2: Negate the following statement: Va € R,3y € R, (z +y > 0)

Problem 3: Determine if the following are logically equivalent: - P — (QV R) - (P = Q) V (P —
R)

Problem 4: State the contrapositive, converse, and inverse of: “If n is divisible by 4, then n is
even.”

8.2 Problem Set 2: Proofs

Problem 5: Prove: For all integers n, if n3 is even then n is even.

Problem 6: Prove: v/3 is irrational.

2

Problem 7: Prove: For all integers n, n® —n is even.

Problem 8: Prove or disprove: For all real numbers x and vy, if xy = 0 then x =0 or y = 0.

49

8.3 Problem Set 3: Sets

Problem 9: Let A ={1,2,3} and B = {2,3,4}. Compute: - AAB - P(AN B)
Problem 10: Prove: AN (BUC)=(ANB)U(ANC)
Problem 11: List all elements of P({a,b,c}).

Problem 12: Given S = {1,2,{3},0}, determine true or false: -2€ S- {2} € S-{2} CS-0e€ S
-pc S

8.4 Problem Set 4: Functions

Problem 13: For f: R — R, f(x) = 23 — 2, determine: - Is f injective? - Is f surjective? - What
domain/codomain restrictions make f bijective?

Problem 14: Prove: The composition of two injective functions is injective.

Problem 15: Find a bijection between (0,1) and (0, c0).

Problem 16: Give an example of functions f, g where g o f is injective but g is not injective.

8.5 Problem Set 5: Cardinality

Problem 17: Prove: [N x N| = |N|

(Hint: Use the pairing function or diagonal argument for listing)
Problem 18: Prove: |[0,1]| = |(0,1)|

(Open vs closed interval)

Problem 19: Explain why |P(N)| = |R]

Problem 20: Which is larger: |Q x Q| or |Q|? Justify.

8.6 Problem Set 6: Mathematical Induction
8.6.1 Solution to Guided Problem 3

Problem: Prove that for all n > 5, 2™ > n2.
Complete Solution:

Base case (n =5):
25 =32 and 5%=25

Since 32 > 25, the base case holds.

Inductive step:

50

Inductive hypothesis: Assume for some k > 5 that 2F > k2.
Goal: Prove 281 > (k +1)2.
Proof:

2kl = 2. 2k (28)
> 2k? [by inductive hypothesis] (29)

Now we need to show 2k? > (k + 1)2 for k > 5.

Expanding:

(k+1)22 =k +2k+1 (30)

‘We want to show:
2k > k2 +2k+1

Simplifying;:
k? > 2k +1
kK —2k—1>0

Fork=5:25—-10—1=14>0

For k > 5, since k? grows much faster than 2k, the inequality continues to hold.
More rigorously: For k > 5, we have k* —2k —1=k(k—2)—1>5(3) —1 =14 > 0.
Therefore 2¥71 > 2k2 > (k + 1)2.

Conclusion: By mathematical induction, 2" > n? for all n > 5.

8.6.2 Solution to Practice Problem 4

Problem: Prove that for all n > 0 and r # 1:

n+1 1

_T —
or—1

T'i

i=0
Solution:
Base case (n = 0):
idee N0 6 0
Left side: . r'=1"=1
Right side: % =rl_g
Since 1 = 1, the base case holds.

51

Inductive step:

Inductive hypothesis: Assume for some k > 0:

k ; T’k+1 -1
rt= —
= r—1
Goal: Prove:
k+1 . 7ﬂk;_|_2 -1
= —
= r—1
Proof:
k+1 k
Zri = (Z ri> + rhtl (31)
i=0 i=0
Tk+1 -1
= ———— + 71 [inductive hypothesis] (32)

r—1
- ’I”k+1 -1 Tk+1 (7“ _ 1)

or—1 + r—1 (33)
pEtL 1 4 pkt2 gkl

- r—1 (34)
,r.k+2 1

T 1 (35)

This is exactly what we needed to prove.

Conclusion: By mathematical induction, the geometric sum formula holds for all n > 0 when

r# 1.

8.6.3 Solution to Challenge Problem 5

Problem: Prove that for all n > 1, F,, < 2.

Solution using Strong Induction:

Basecases: -n=1: F; =1<2'=2 -n=2F,=1<22=4
Inductive step:

Inductive hypothesis: Assume for all 1 < j <k (where k > 2) that F; < 27,
In particular, we have Fj,_; < 2¥~! and F}, < 2.

Goal: Prove Fy_, < 2K,

Proof:

52

F,.1=F,+F, , [Fibonacci recurrence] (36)
< 2k 4 281 |by inductive hypothesis] (37)
= 2k-1(2 4 1) (38)
—3.2k1 (39)
<4-2F1 since 3 < 4] (40)
=22.2k1 (41)
— ok+1 (42)

Therefore Fy,,; < 2~
Conclusion: By strong induction, F, < 2" for all n > 1.

Note: We needed strong induction because the Fibonacci recurrence requires knowledge of both F},
and Fj,_;, not just the immediately preceding term.

93

	Introduction
	Logic and Propositions
	Historical Background
	Understanding Propositions
	Formal Definitions
	Logical Connectives
	Related Statements
	Necessary and Sufficient Conditions

	Key Properties
	Quantifiers
	Negating Quantifiers
	Order Matters
	Edge Cases

	Examples
	Example 1: Simple Truth Table
	Example 2: Quantifier Order
	Example 3: Vacuous Truth
	Example 4: Non-Example

	Frequent Mistakes
	Prerequisites and Connections

	Proof Techniques
	Historical Background
	What Is a Proof?
	Direct Proof
	Example 1: Simple Direct Proof

	Proof by Contrapositive
	Example 2: Contrapositive Proof

	Proof by Contradiction
	Example 3: Classic Contradiction

	Proof by Cases
	Example 4: Case Analysis

	Choosing a Technique
	Verifying Proofs
	What to Watch For
	Prerequisites and Connections

	Sets and Operations
	Historical Background
	Understanding Sets
	Formal Definitions
	Specifying Sets
	Special Sets

	Subsets
	Set Operations
	Union: A \cup B
	Intersection: A \cap B
	Difference: A \setminus B
	Complement: A^c
	Symmetric Difference: A \triangle B

	Properties of Set Operations
	Cartesian Products
	Power Sets
	Example 1: A = \{1, 2\}
	Example 2: A = \{a, b, c\}
	Example 3: A = \emptyset

	Examples
	Example 1: Element vs. Subset
	Example 2: Set Operations
	Example 3: Proving Set Equality
	Example 4: Non-Example

	Typical Errors
	Building Blocks

	Relations and Functions
	Relations
	Properties of Binary Relations
	Equivalence Relations

	Functions
	Types of Functions

	Examples
	Example 1: Injective Function
	Example 2: Not Injective
	Example 3: Surjective Function
	Example 4: Not Surjective
	Example 5: Bijective Function
	Example 6: Surjectivity Depends on Codomain

	Function Composition
	Common Errors

	Cardinality
	Understanding Infinity
	Comparing Set Sizes
	Countably Infinite Sets
	Example 1: Even Natural Numbers
	Example 2: Integers
	Example 3: Rational Numbers

	Uncountably Infinite Sets
	Cantor's Diagonal Argument

	Hierarchy of Infinities
	Summary Table

	Examples
	Example 1: Interval [0,1]
	Example 2: Power Set of Naturals
	Example 3: Non-Example

	What to Watch For
	Prerequisites and Connections

	Mathematical Induction
	Historical Background
	Understanding Mathematical Induction
	Formal Definition
	Why This Definition
	Key Properties
	Property 1: Well-Ordering Principle (Equivalent)
	Property 2: Strong Induction
	Property 3: Structural Induction

	Main Theorems
	Computational Methods
	Algorithm: Writing an Induction Proof
	Example: Sum Formula

	Examples and Worked Problems
	Worked Example 1: Proving a Summation Formula
	Worked Example 2: Divisibility
	Guided Problem 3: Inequality
	Practice Problem 4: Geometric Sum
	Challenge Problem 5: Fibonacci Inequality

	Frequent Mistakes and Debugging
	Error Pattern 1: Not Stating the Inductive Hypothesis
	Error Pattern 2: Proving the Base Case for n = 0 When Statement is n ≥ 1
	Error Pattern 3: Circular Reasoning (Using P(k+1) to Prove P(k+1))
	Error Pattern 4: Incomplete Base Case (Multiple Base Cases Needed)
	Error Pattern 5: Algebra Errors in Inductive Step
	Debugging Checklist for Induction Proofs

	Mathematical Connections
	Prerequisites
	What This Enables
	Related Concepts
	Synthesis: The Bigger Mathematical Picture

	Exploring Further
	Generate Your Own Examples
	Create Your Own Problems
	Extend the Concept
	Prove Related Results
	Hints and Ideas for Exploration

	Applications to Machine Learning
	Training and Test Sets
	Hypothesis Classes
	Feature Spaces
	PAC Learning and Quantifiers
	Function Spaces

	Practice Problems
	Problem Set 1: Logic
	Problem Set 2: Proofs
	Problem Set 3: Sets
	Problem Set 4: Functions
	Problem Set 5: Cardinality
	Problem Set 6: Mathematical Induction
	Solution to Guided Problem 3
	Solution to Practice Problem 4
	Solution to Challenge Problem 5

